SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
$\mathbf{1}$	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	State any four important features of 8051 microcontroller.	2M
Ans:	Features of 8051 microcontroller: (Any Four) 1) 8- bit data bus and 8- bit ALU. 2) 16- bit address bus - can access maximum 64KB of RAM and ROM. 3) On- chip RAM -128 bytes (Data Memory) 4) On- chip ROM - 4 KB (Program Memory) 5) Four 8-bit bi- directional input/output ports Four 8-bit bi- directional input/ output ports. 6) Programmable serial ports i.e. One UART (serial port) 7) Two 16- bit timers- Timer 0\& Timer 1 8) Works on crystal frequency of 11.0592 MHz 9) Has power saving and idle mode in microcontroller when no operation is performed. 10) Six interrupts are available: Reset, Two interrupts Timers i.e. Timer 0 and Timer 1, two	Each correct feature: 1/2 Mark	

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

	external hardware interrupts- INTO and INT1, Serial communication interrupt for both receive and transmit.	
(b)	Find out the number of address lines required to access 4 KB of RAM	2M
Ans:	12 address lines required to access 4 KB of RAM as $2^{12}=4 K B$	Calculati on:1M Answer: 1M
(c)	List out any two instructions of following addressing modes: (i) Immediate addressing. (ii) Register addressing.	2M
Ans:	(i) Immediate addressing instructions: 1. MOV A, \#36H 2. MOV DPTR, \#27A2H (ii) Register addressing. 1. MOV A, RO 2. MOV R7, A (NOTE: Consider any relevant correct instructions)	Each instructi on $1 / 2 \mathrm{M}$
(d)	Draw the format of SCON register.	2M
Ans:	SM0 SM1 SM2 REN TB8 RB8 TI RI SM0 SCON. 7 Serial port mode specifier SM1 SCON. 6 Serial port mode specifier SM2 SCON. 5 Used for multiprocessor communication (Make it 0.) REN SCON. 4 Set/ cleared by software to enable/ disable reception. TB8 SCON. 3 Not widely used. RB8 SCON. 2 Not widely used TI SCON. 1 Transmit interrupt flag. Set by hardware at the beginning of the stop Bit in mode 1. Must be cleared by software.	2M for format Bitwise explaina tion optional

SUMMER-19 EXAMINATION Subject Name: Microcontroller and applications Model Answer Subject Code:

	g)	Define the term BU microcontroller.	elated to microprocessor/controller and list different buses used in	2M
	Ans:	BUS: A Bus is a set of peripherals. Different buses used 1. Address Bus 2. Data Bus 3. Control Bus	ysical connections used for communication between CPU and microcontroller are:	Define:1 M List:1M
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$		Answers	Marking Scheme
2		Attempt any THREE	he following:	12- Total Marks
	a)	Draw the interfacing direction	stepper motor and write an ALP to rotate in anticlockwise	4M
	Ans:	Interfacing diagram	stepper motor with 8051:	$\begin{aligned} & \text { Diagram } \\ & \text { :2M } \end{aligned}$

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

	H2: DJNZ R3, H2 DJNZ R2, H1 RET (NOTE: Any other correct logic used for program should be considered)	
b)	Describe power down mode and ideal mode of 8051 with circuit diagram . which SFR is used to set these modes and draw the same.	4M
Ans:	IDLE MODE In the Idle mode, the internal clock signal is gated off to the CPU, but not to the Interrupt, Timer and Serial Port functions. The CPU status is preserved in its entirety, the Stack Pointer, Program Counter, Program Status Word, Accumulator, and all other registers maintain their data during Idle. The port pins hold the logical state they had at the time idle mode was activated. ALE and PSEN hold at logic high levels. There are two ways to terminate the idle mode. i) Activation of any enabled interrupt will cause PCON.O to be cleared and idle mode is terminated. ii) Hard ware reset: that is signal at RST pin clears IDEAL bit IN PCON register directly. At this time, CPU resumes the program execution from where it left off. POWER DOWN MODE An instruction that sets PCON. 1 causes that to be the last instruction executed before going into the Power Down mode. In the Power Down mode, the on-chip oscillator is stopped. With the clock frozen, all functions are stopped, but the on-chip RAM and Special Function Register are maintained held. The port pins output the values held by their respective SFRS. ALE and PSEN are held low. Termination from power down mode: an exit from this mode is hardware reset. Reset defines all SFRs but doesn't change on chip RAM PCON (Power Control Register) SFR is used to set these modes.	Power down mode:1 M Idle Mode:1 M Identific ation of PCON:1 M PCON Format: 1M

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:
22426

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers						Marking Scheme
3		Attempt any THREE of the following :						12- Total Marks
a)Ans:		Draw the format of PSW register of 8051 microcontroller and explain the function of each bit.						4M
		CY AC F0 RS1 RS0 OV CY PSW.7 Carry Flag. AC PSW. 6 Auxiliary carry flag. FO PSW.5 Available to the user for general purpose. RS1 PSW.4 Register bank selector bit 1. 1. CY: Carry flag. This flag is set whenever there is a carry out from the D7 bit after an 8 bit addition or subtraction. It can also be set to 1 or 0 directly by instructions such as "SETB C" and CLR C" where "SETB C" stands for"set bit carry" and "CLR C" for "clear carry". 2. AC: Auxiliary carry flag If there is a carry from D3 and D4during an ADD or SUB operation, this bit is set; it is cleared. This flag is used by instructions that perform BCD (binary coded decimal) arithmetic. 3. FO: Available to the user for general purposes. 4. RSO, RS1: Register bank selects bits These two bits are used to select one of the four register banks from internal RAM as shown in given table. The user can use only one bank of register at one time. By default, bank 0 gets selected. 5. OV: Overflow flag						2M format, 2M function

ENGINEERING

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

	This flag is set whenever the result of a signed number operation is too large, causing the high- order bit to overflow into the sign bit. In general, the carry flag is used to detect errors in unsigned arithmetic operations. The overflow flag is only used to detect errors in signed arithmetic operations. 6. P: Parity flag The parity flag reflects the number of 1 s in the A (accumulator) register only. If the A register contains an odd number of 1 s , then $\mathrm{P}=1$. $\mathrm{P}=0$ if A has an even number of 1 s .	
b)	Develop an ALP to generate square wave of 2 kHz on port pin $\mathbf{P} 2.1$ generate delay using timer 0 in mode 1. Assume crystal frequency of 11.0592 MHz .	4M
Ans:	Calculation: Crystal frequency $=11.0592 \mathrm{MHz}$ I / P clock $=\left(11.059 \times 10^{6}\right) / 12=1000000=921.58 \mathrm{KHz}$ Tin $=1.085 \mu \mathrm{sec}$ For 2 kHz square wave Fout $=2 \mathrm{KHz}$ Tout $=1 / 2 \times 10^{3}$ $=0.5 \mathrm{msec}=500 \mu \mathrm{sec}$ So $\mathrm{T}_{\text {ON }}=\mathrm{T}_{\text {OFF }}=250 \mu \mathrm{sec}$ $\mathrm{N}=\mathrm{T}_{\text {ON }} / \mathrm{Tin}=250 / 1.085=230.41$ $65535-231+1=(65305)_{10}=(\text { FF19 })_{16}$ Program:- ; Set timer 0 in Mode 1, i.e., 16 bit timer load TH register with MSB of count ; complement port 2.1 line to get high or low ; re-load timer with count as mode 1 is not auto reload MOV TMOD, \# 01H L2: MOV TLO, \# 19H ; Load TL register with LSB of count MOV THO, \# OFFH SETB TRO ; start timer 0 L1: JNB TFO, L1 ; poll till timer roll over CLR TRO ; stop timer 0 CPL P2.1 CLR TFO ; clear timer flag 0 SJMP L2	1M- Calculati on, 2M program , 1M commen ts
c)	State and explain the need of the following development tools microcontroller board: (i) Editor (ii) Assembler (iii) Compiler (iv) Linker	4M
Ans:	1) Editor: An editor is a program which helps you to construct your assembly language program in right format so that the assembler will translate it correctly to machine language. So, you can type your program using editor. This form of your program is called as source program and extension of program must be .asm or .src depending on which assembler is	1M each

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

ourpeqarlers :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

LANE Direction	8051 LINES	TRAFFIC LIGHT
NORTH	P1.0(NR)	RED
	P1.1(NY)	YELLOW
	P1.2(NG)	GREEN
	P1.3(SR)	RED
	P1.4(SY)	YELLOW
	P1.5(SG)	GREEN
EAST	P1.6(ER)	RED
	P1.7(EY)	YELLOW
	P3.0(EG)	GREEN
	P3.1(WR)	RED
	P3.2(WY)	YELLOW
	P3.3(WG)	GREEN

Process:

1. Allow traffic from W to E and E to W.
2. Yellow light ON.
3. Allow traffic from \mathbf{N} to S and S to N
4. Yellow light ON.
5. Repeat Process

Program:
NR EQU P1.0
NY EQU P1.1
NG EQU P1.2

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

OURPeqalters:
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

OURPagal ${ }^{2}$ PERS:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

			, 1MComme nts
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Explain the various selection factors of microcontroller suitable for application.	6M
	Ans:	The selection of microcontroller depends upon the type of application. The following factors must be considered while selecting the microcontroller. 1. Word length: The word length of microcontroller is either 8,16 or 32 bit. As the word length increases, the cost, power dissipation and speed of the microcontroller increases. 2. Power dissipation: It depends upon various factors like clock frequency, speed,	Any 6 1 Mark- each factor

ENGINEERING

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

	supply voltage, VLSI technology etc. For battery operated embedded systems, we must use low power microcontrollers. 3. Clock frequency: The speed of an embedded system depends upon the clock frequency. The clock frequency depends upon the application. 4. Instruction Set: On the basis of instructions microcontrollers are classified into two categories 1. CISC 2. RISC. CISC system improves software flexibility. Hence it is used in general purpose systems. RISC improves speed of the system for the particular applications. 5. Internal resources: The internal resources are ROM, RAM, EEPROM, FLASH ROM, UART, TIMER, watch dog timer, PWM, ADC, DAC, network interface, wireless interface etc. It depends upon the application for which microcontroller is going to be used. 6. I/O capabilities: The number of I/O ports, size and characteristics of each I/O port, speed of operation of the I/O port, serial port or parallel ports. These are the considerations needed to ascertain. 7.Memory: For mass production of microcontrollers ROM versions and for lesser production EPROM version or CPU version with external program memory is suitable	
b)	Develop a program to transfer block of 05 numbers. From memory location 50H to 60H.	6M
Ans:	NOTE: Program may change. Please check the logic and understanding of students	4 M- Correct Program ,2 Mcommen ts

ENGINEERING

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

22426

		PROGRAM TO DISPLAY STATUS OF SWITCHES ON LED: ORG 0000H MOV PO, \#OFOH ; Make PO as input START: MOV A, PO ; Read status of the key CJNE A, \#OFOH, CHECK1 ; Key pressed branch from Port 0 SJMP START ; Jump to start CHECK1: LCALL DELAY ; Call Key debounce delay MOV A, PO ; Read data from port 0 CPLA ; Complement A MOV P1, A ; Send data to LED SJMP START ; Jump to start DELAY: MOV R1,\#OFFH ; Delay program UP: MOV R2, \#OFFH; HERE: DJNZ R2, HERE DJNZ R1, UP RET END	
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:
22426

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

		MY_DATA EQU P1 ORG 0000H MOV MY_DATA,\#OFFH ; make P1 as input SETB EOC ; make EOC an input CLR ALE ; clear ALE CLR SC ; clear SC CLR OE ;clear OE CLR ADDR_C ; C=0 CLR ADDR_B ; B=0 CLR ADDR_A ; A=0(select channel 0) ACALL DELAY SETB ALE ;latch address ACALL DELAY BACK: SETB SC ;start conversion ACALL DELAY CLR ALE CLR SC HERE: JB EOC,HERE ; wait HERE1: JNB EOC,HERE1 SETB OE ACALL DELAY MOV A, MY_DATA MOV P1, A CLR OE SJMP BACK DELAY: MOV R3,\#25 ;Delay Subroutine L3: MOV R4,\#100 L2: MOV R5,\#100 L1: DJNZ R5,L1 DJNZ R4,L2 DJNZ R3,L3 RET END

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

b)	Develop a program to toggle the LED's after every 500 m sec connected to P1.0 and P1.1 after receiving the external interrupt on INTO.	6M
Ans:	NOTE: Program may change. Please check the logic and understanding of students Solution : Crystal freq $=11.0592 \mathrm{MHz}$ Timer frequency $=11.0592 \mathrm{MHz} / 12$ Time $=12 / 11.0592 \mathrm{MHz}=1.085 \mu \mathrm{~s}$ For delay of 50 ms , $50 \mathrm{~ms} / 1.085 \mu \mathrm{~s}=46082$ Therefore, count to be loaded in TH1 and TL1 can be calculated as $65536-46082=19454 \mathrm{D}=4 \mathrm{BFEH}$ Note: If crystal frequency is taken as 12 MHz then count to be loaded in TH1 and TL1 will be 3CBOh. Program: ORG 00 H LMP MAIN ORG 0003 H MOV TMOD, \#10H ; Timer1, mode 1 HERE : MOV RO, \#OAH ; Counter for 500ms (50*10)delay BACK : MOV TL1, \# BOH ; load count value in TL1 MOV TH1, \#3CH ; load count value in TH1 SETB TR1 ; start Timer 1 AGAIN : JNB TF1, AGAIN ; stay until timer rolls over CLR TR1 ; stop timer CLR TF1 ; clear timer flag DJNZ RO, BACK ; if RO is not equal to 0 , reload timer CPL P1.0 ; Toggle P1.0	4 M- correct program ,1 M- delay calculati on,1M- commen ts

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

	CPL P1.1 ; Toggle P1.1 RETI ; repeat MAIN : MOV IE, \#81H ; Enable the external interrupt 0 SETB P3.2 ; P3.2 as input pin HERE : SJMP HERE END	
c)	Explain the following instructions. SWAP A ADD C MUL AB CJNE A, add, radd MOV A, R_{0} MOVX A, @ A + DPTR.	6M
Ans:	SWAP A Description: This instruction exchanges bits 0-3 of the Accumulator with bits 4-7 of the Accumulator. This instruction is identical to executing "RR A" or "RLA four times $\begin{array}{llr} \text { Example: } & \text { MOV A, \#59H } & ; A=59 H \\ & \text { SWAP A } & ; A=95 H \end{array}$ ADD C Description: This instruction is used to perform addition of two eight-bit numbers along with carry. The result is stored in accumulator which is the default destination. Example: ADDC A, RO : Add contents of accumulator, RO and carry . The result is stored in accumulator. MUL AB Description: the multiplicand and the multiplier must be in A and B registers. After multiplication if the result is 8 bit it will be in the accumulator and if the result is larger than 8 bit ,lower byte of result will be in accumulator and higher byte will be in register B . Example :MOV A, $\# 10 \mathrm{H}$ MOV B, \#02 H MUL AB	1 M each instructi on.

ENGINEERING

SUMMER-19 EXAMINATION

Subject Name: Microcontroller and applications Model Answer Subject Code:

SUMMER-19 EXAMINATION
Subject Name: Microcontroller and applications Model Answer Subject Code:

